

This is a preprint of a paper intended for publication in a journal or
proceedings. Since changes may be made before publication, this
preprint should not be cited or reproduced without permission of the
author. This document was prepared as an account of work
sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, or any of
their employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party’s use,
or the results of such use, of any information, apparatus, product or
process disclosed in this report, or represents that its use by such
third party would not infringe privately owned rights. The views
expressed in this paper are not necessarily those of the United
States Government or the sponsoring agency.

INL/CON-10-20411
PREPRINT

Fuzzy Logic Based
Anomaly Detection for
Embedded Network
Security Cyber Sensor

2011 IEEE Symposium on
Computational Intelligence in Cyber
Security

Ondrej Linda
Milos Manic
Todd Vollmer
Jason Wright

April 2011

Fuzzy Logic Based Anomaly Detection for Embedded
Network Security Cyber Sensor

Ondrej Linda, Milos Manic
University of Idaho

Idaho Falls, ID, USA
olinda@uidaho.edu, misko@ieee.org

Todd Vollmer, Jason Wright
Idaho National Laboratory

Idaho Falls, ID, USA
denis.vollmer@inl.gov, jlwright@ieee.org

Abstract— Resiliency and security in critical infrastructure
control systems in the modern world of cyber terrorism
constitute a relevant concern. Developing a network security
system specifically tailored to the requirements of such critical
assets is of a primary importance. This paper proposes a novel
learning algorithm for anomaly based network security cyber
sensor together with its hardware implementation. The presented
learning algorithm constructs a fuzzy logic rule base modeling
the normal network behavior. Individual fuzzy rules are
extracted directly from the stream of incoming packets using an
online clustering algorithm. This learning algorithm was
specifically developed to comply with the constrained
computational requirements of low-cost embedded network
security cyber sensors. The performance of the system was
evaluated on a set of network data recorded from an
experimental test-bed mimicking the environment of a critical
infrastructure control system.

Keywords-— Anomaly Detection; Cyber Sensor; Embedded
Systems; Fuzzy Logic System; Online Clustering;

I. INTRODUCTION
Critical infrastructure control systems, typically composed

of interconnected computer-based stations, exchange crucial
information via the computer network. These critical
components, which can be found in systems such as SCADA
or nuclear power plants, constitute a focus of an increased
cyber security [1], [2]. Breaking into such systems with
network intrusion attacks can have severe effects on multiple
levels, such as security, public safety, industrial or
economical. The danger is even higher considering that critical
infrastructures are not immune to these threats and that they
possibly may be more vulnerable than common information
technology systems [3]. Therefore, network traffic anomaly
detection for critical infrastructures is an obvious need [4].

Network intrusion detection systems originated in 1980’s
and in the seminal work of Denning [5], [6]. Generally
speaking, two kinds of IDS can be found; anomaly detection
and signature based detection systems. Signature based
detection system attempt to match the observed behavior
against a database of known attack signatures. On the other
hand, an anomaly based detection system seeks deviations
from the learned model of normal behavior [7], [8]. The
system builds a representative model exclusively based on the
previously collected normal behavior. The system is capable

of detecting novel and dynamically changing intrusion
instances, assuming that these are substantially different from
the model of normal behavior. Unfortunately, any normal
acceptable behavior not included in the training set will likely
not match the model and generate false alarm. Hence,
acquiring descriptive training dataset is of a crucial
importance. The anomaly detection approach is adopted in the
presented paper.

Computational intelligence techniques have been
extensively applied to the problem of network intrusion
detection [7], [9]. Techniques such as artificial neural
networks [10]–[13], support vector machines [14], genetic
algorithms [15], fuzzy logic [16], [17] or unsupervised
clustering [18]-[20], proved to be powerful learning tools for
modeling the network behavior. The attractiveness of
computational intelligence comes from the ability to learn
from multi-dimensional non-linear data [9].

The presented paper proposes a learning algorithm for a
fuzzy logic based anomaly detection system specifically
developed for the constrained resources of embedded network
security cyber sensors [21]. A schematic view of the presented
system is depicted in Fig. 1. Here the implemented cyber
sensor creates a secure zone around the control system. The
learning algorithm builds a fuzzy rule base, which describes
the previously seen normal network communication
behavioral patterns. This fuzzy rule base is constructed
directly from the stream of incoming packets using the online
version of the nearest neighbor clustering algorithm.
Subsequently, the set of extracted clusters is transformed into
individual fuzzy rules. Moreover, the algorithm can be re-
trained on newly available normal behavior data, while

Fig. 1 Schematic diagram of the network security cyber sensor [20].

maintaining the previously acquired knowledge. The
performance of the algorithm was tested on an experimental
test-bed mimicking the critical infrastructure control system.

The rest of the paper is structured as follows. Section II
provides a brief overview of fuzzy logic systems and the
nearest neighbor clustering algorithm. The considered
hardware platform for the embedded network security device
is described in Section III. Section IV and V explain the
network behavior feature extraction technique and the
proposed anomaly detection algorithm, respectively. The
system is experimentally evaluated in Section VI and Section
VII concludes the paper.

II. BACKGROUND OVERVIEW
This section provides a brief background overview of fuzzy

logic systems and the nearest neighbor clustering algorithm.

A. Fuzzy Logic Systems
Fuzzy logic has been originally proposed by Zadeh as a tool

for dealing with linguistic uncertainty and vagueness
ubiquitous in the imprecise meaning of words [23]. A Fuzzy
Logic System (FLS) is composed of four primary parts – input
fuzzification, fuzzy inference engine, fuzzy rule base and
output defuzzification, as depicted in Fig. 2. The Mamdani
FLS considered in this work maintains a fuzzy rule base
populated with fuzzy linguistic rules in an implicative form.
Consider rule Rk that is described as follows [24], [25]:

 Rule Rk: IF x1 is kA1 AND … AND xn is k

nA
 THEN yk is Bk (1)

Here, symbol k
iA and Bk denote the ith input fuzzy set and

the output fuzzy set of the kth rule, respectively, n is the
dimensionality of the input vector x

�
 and yk is the associated

output variable. Each element of the input vector x
�

 is first
fuzzified using the respective fuzzy membership function (e.g.
Gaussian, triangular, trapezoidal, etc.). The fuzzification of
input value xi into fuzzy set Ai yields a fuzzy membership
grade)(iA

xk
i

� . Using the minimum t-norm the degree of

firing of rule Rk can be calculated as:

 nixx iAR k

ik
...1)},({min)(�� ��

�
 (2)

After applying the rule firing strength via the t-norm

operator to each rule consequent, the output fuzzy sets are
aggregated using the t-conorm operator (e.g. the maximum

operator) resulting in a output fuzzy set B. For detailed
description of the fuzzy inference process refer to [24], [25].

In order to obtain the crisp output value, one of the available
defuzzification techniques is applied. Upon discretizing the
output domain into N samples, for example the centroid
defuzzifier can be applied:

�

�

�

�� N

i
iB

N

i
iBi

y

yy
y

1

1

)(

)(

�

�
 (3)

B. Nearest Neighbor Clustering
The Nearest Neighbor Clustering (NNC) algorithm is an

unsupervised clustering technique [9]. The clustering process
is controlled by an established maximum cluster radius
parameter. The smaller the radius the more clusters will be
generated and vice versa.

Assume an input dataset X composed of N input patterns
denoted as:

 � � n
iN xxxX ���
���

,...,,1 (4)

Here, n denotes the dimensionality of the input domain.

Vector ix
�

 can be expressed as },...,{ 1 n
iii xxx �

�
.

Each cluster constitutes a prototype of similar instances,
subject to a specific similarity measure. The Euclidean
distance similarity measure is considered in this work. Each
cluster Pi is described by its Center Of Gravity (COG) ic

�
and

its associated weight wi. The weight wi stores the number of
patterns previously assigned to cluster Pi. Following this
notation, cluster Pi can be expressed as:

 � � 	
���� i

n
iiii wcwcP ,,,
��

 (5)

The learning process of the NNC algorithm begins by

creating an initial cluster P1 at the location of the first input
pattern 1x

�
. Next, input patterns from dataset X are selected in

a sequential manner. The nearest prototype from the set of
available clusters is determined for each instance. For an input
pattern ix

�
, the nearest cluster Pa is determined using the

Euclidean distance norm:

� � � � � � Cjxcxcxcdist n
i

n
jijjia ...1,...min,

2211 �		�
��

 (6)

Here, C denotes the number of currently acquired clusters.

Using the maximum cluster radius parameter - rad, the input
pattern ix

�
 is assigned to cluster Pa if the following condition

holds: � � radxcdist ia �
��

, . In this case, the parameters of cluster
Pa are updated as:

Fig. 2 Fuzzy logic system.

 1,
1

	�
	
	

� aa
a

iaa
a ww

w
xcwc
��

�
 (7)

If � � radxcdist ia �

��
, , a new cluster is created at the location

of input pattern ix
�

, and its weight is set to 1.

III. EMBEDDED NETWORK SECURITY CYBER SENSOR
The Tofino embedded network security device, depicted in

Fig. 3, is manufactured by Byres Security Inc. [22]. Originally,
the device was developed for pre-emptive threat detection,
termination and reporting, specifically tailored for the needs of
SCADA and industrial control systems. Its major advantages
are primarily its low-cost and ease of deployment in real world
systems. In the presented work, the Tofino cyber sensor was
used as an embedded development platform for
implementation of the proposed anomaly based detection
learning algorithm.

 The Tofino platform consists of an Arcom Vulcan single
board computer. The main processor is an Intel IXP425
XScale processor running at 533MHz with 64MB of DRAM
and 32MB of flash memory. The Intel IXP425 XScale is based
on an ARM V5TE instruction set [26]. Two Ethernet ports are
provided along with two USB ports. The Ethernet ports are
used in processing packet data and the USB ports are used for
storage of statistics. The operating system is based on the
OpenWRT distribution of Linux.

One of the specifics of this embedded platform is that the
Intel IXP425 XScale processor used in the Tofino platform
does not have a floating point unit (FPU). Instead, the floating
point arithmetic used in the presented algorithm is emulated.
Future work will include modification of the current
implementation to use fixed point (integer) arithmetic.
Depending on the implementation, a large performance gain
may be achieved by using the SIMD Multiply-Accumulate
unit coprocessor unit available on the IXP425. This
coprocessor allows 16x32 multiply-accumulate operations to
complete in a single cycle.

While not of utmost concern in an academic setting, the
implementation of the proposed algorithm on a hardware
platform is relevant. Sommer and Paxson [7] argue that it in

terms of capabilities and limitations it is important to obtain
insight into the performance of an anomaly detection system
from an operational point of view. The focused
implementation is here at a very low level with an envisioned
deployment just before some critical equipment, such as a
Programmable Logic Controller (PLC). With the increasingly
common usage of network based control systems and the
current deployment of smart grid systems hundreds, thousands
and possibly millions of devices will be interconnected. This
makes the cost and reliability of an implemented hardware
solution a relevant concern. In addition, the proposed
hardware implementation of the embedded network security
cyber sensor provides a performance baseline that might prove
useful for comparison in future work.

IV. DATA ACQUISITION AND FEATURE EXTRACTION
This section describes the network data acquisition process

and reviews the previously published window based feature
extraction technique.

A. Control System Experimental Test-Bed
The hardware experimental test-bed system that was used for

network data acquisition represents several aspects of an
operational control system, such as operational control
structure, control system network and hardware control of
actual physical processes. RSView32, a Rockwell Software
HMI product, provides an integrated component based
interface for monitoring of the system behavior. The interface
runs on a Windows XP laptop connected via an IPv4 network.
A Moxa EDS-505A operated Ethernet switch provides
network connectivity for the controller. This switch is
mounted on a DIN-Rail and powered by the control system
source. All network traffic to and from the controller is
transported via the switch. Port mirroring has been enabled on
the control traffic port connected to the HMI machine. A
Linux laptop with the tcpdump software application was

Fig. 3 Photo of the TOFINO network security cyber sensor plugged-in into
the test system.

Fig. 4 Network data acquisition setup. A PLC is connected through a hub to
the control PC station using an Ethernet network.

attached to the mirror port allowing for network traffic
capturing and monitoring. Finally, a second Linux-based
laptop representing the attacker-compromised machine was
attached to a third port. All anomalous traffic was instantiated
from this machine.

The control system itself consists of an Allen-Bradley
MicroLogix 1100 PLC [27]. Attached to the PLC are 6 lighted
buttons, 7 lights, 2 potentio-meters, 2 temperature sensors and
a small electric fan constituting both digital and analog
input/output points. All of the items are capable of being
controlled individually from the PLC or directly by pressing a
button. The experimental is depicted in Fig. 4.

B. Feature Extraction from Packet Stream
In a previous work of the authors, an Artificial Neural

Network (ANN) based intrusion detection system was
developed [13]. The ANN was trained on a sub-set of
available network traffic features extracted by a window-based
feature extraction technique applied directly to the stream of
packets. This feature extraction technique is also utilized in the
presented work. Here, the inherent time series nature of the
packet stream data is described by a vector capturing the
statistical behavior of the network traffic. The applied window
segments the packet stream and monitors only a limited set of
consecutive packets.

As described in [13], a window of specified length � is
being shifted over the stream of network packets. At each
position of the window a feature vector jr

�

 is computed from
all the packets iv

�
 currently presented in the window. The next

arriving packet is pushed into the window, while the last
packet is removed from the end. The process of window based
feature extraction is illustrated in Fig. 5.

Table I summarizes the list of extracted window-based
statistical features. This set of features was empirically
selected based on the analysis of the recorded network traffic
and the motivation to most accurately capture the time series
nature of the packet stream. For further details and evaluation
of the window based feature extraction refer to [13].

V. ONLINE LEARNING FOR ANOMALY IDS
This section presents the learning algorithm for the fuzzy

logic based anomaly detection for an embedded network
security cyber sensor. First, rule extraction via adapted online
NNC algorithm is presented. Next, the fuzzy rule based
normal behavior modeling is explained.

A. Rule Extraction via Online Clustering
The proposed rule extraction algorithm takes into account

the constrained computational resources of the available
embedded network security cyber sensor. Other learning
approaches, such as the previously published IDS-NNM
algorithm [13], pursue offline learning approach once all
training data have been acquired. However, such learning
process is typically computationally unfeasible for the
considered embedded devices, given the typically encountered
network traffic density [21].

This paper proposes a new low-cost online rule extraction
technique. The presented algorithm learns directly from the
stream of incoming packets. In this manner, the need for
storing all packet information into memory is eliminated. The
final normal network behavior model is composed of a set of
fuzzy rules. Each rule is extracted using an online version of
the adapted NNC algorithm. The algorithm maintains
additional information about the spread of data points
associated with each cluster throughout the clustering process.

Each cluster Pi of encountered normal network behavior is
described by its center of gravity ic

�
, weight wi and a matrix of

boundary parameters Mi. Hence:

 n
ii

n
ii

i
n
iiiiiii cc

cc
McccMwcP

�

���
1

1
1 },...,,{},,,{ ��� (8)

Here, i is the index of particular cluster, j

ic is the attribute

value in the jth dimension, j
ic and j

ic are the upper and lower
bounds on the encountered values of the jth attribute for data
points assigned to cluster Pi and n denotes the dimensionality
of the input. The algorithm maintains a set of clusters � .
Initially, the algorithm starts with a single cluster P1
positioned at the first supplied training data point 1x

�
. This

initial data point becomes available once the shifting window
first fills with the incoming packets.

Upon acquiring a new data point ix
�

 from the shifting
window buffer, the set of clusters � is updated according to
the NNC algorithm. First, the Euclidean distance to all

Fig. 5 Window based feature extraction process [13].

TABLE I
SELECTED WINDOW-BASED FEATURES

Num. of IP addresses Num. packets with 0 win. size
Avg. interval between packets Num. packets with 0 data length

Num. of protocols Average window size

Num. of flag codes Average data length

Fig. 6 Illustration of the non-symmetric input Gaussian fuzzy set j

iA .

available clusters with respect to the new input feature vector
ix
�

 is calculated. The nearest cluster Pa is identified. If the
computed nearest distance is greater than the established
maximum cluster radius parameter, a new cluster is created.
Otherwise the nearest cluster Pa is update similarly as in (7):

1,

1
	�

	
	

� aa
a

iaa
a ww

w
xcwc
��

�

 (9)

 njcxccxc j

i
j

i
j
i

j
i

j
i

j
i ...1),min(,),max(��� (10)

Hence, the modified NNC algorithm also keeps track of the

lower and upper bounds of the encountered input values in
each dimension for every cluster.

If the nearest cluster is further away than the established
maximum cluster radius, a new cluster is created according to
the standard NNC algorithm.

B. Fuzzy Rule Based Behavior Modeling
Once the rule extraction phase of the learning process is

finalized (e.g. user decision, time limit, limit on the number of
packets, etc.), the learning algorithm maintains a final set of
clusters � that describe the normal network communication
behavioral patterns observed in the provided training data. In
the next phase of the algorithm, each cluster is converted into
a fuzzy logic rule. Each fuzzy rule describes the belonging of a
particular sub-region of the multi-dimensional input space to
the class of normal behavior.

An n-dimensional cluster Pi is transformed into its associated
fuzzy rule Ri as follows. Rule Ri is composed of n antecedent
fuzzy sets njA j

i ...1, � . Each fuzzy set j
iA , located in the jth

dimension of the input space, is modeled using a non-
symmetrical Gaussian fuzzy membership function with
distinct left and right standard deviations. There are three

parameters of the membership function, namely mean j
im and

the left and the right standard deviations j
i� , j

i� , as shown in
Fig. 6. The parameter values are extracted based on the
computed cluster Pi in the following manner:

 j

i
j

i cm � (11)

)(j

i
j

i
j

i cc ��� (12)

)(j

i
j

i
j
i cc ��� (13)

Here, symbol � denotes the fuzziness parameter, which is

used to adjust the spread of the membership functions. Using
the minimum t-norm, the firing strength of fuzzy rule Ri is
then computed as:

)}({min)(

...1 jAnjR xx j
ii

��
�

�
�

 (14)

In this specific application, the output of the fuzzy rule is a

singleton fuzzy set assigning the input pattern to the normal
behavior class. Hence, in this special case the fired output of a
particular fuzzy rule is actually its own firing strength)(x

iR
�

� .
The final output decision y of the anomaly detection system is
obtained by applying to maximum t-conorm to the output of
all available rules:

)(max)(
...1

xxy
iRCi

��
�

�
� (15)

Here, C denotes the number of extracted fuzzy rules. The

value of the output y denotes the degree of belonging of input
pattern x

�
to the class of normal behavior. By applying a crisp

decision threshold the input pattern can be labeled as either
anomalous or normal network behavior.

(a) (b) (c)

 (d) (e) (f)

Fig. 7 Parameter control analysis of the proposed anomaly detection algorithm. Figures show the number of generated clusters (a), correct classification rate (b),
zoomed-in view of the classification rate (c), false positive rate (d), false negative rate (e), and zoomed-in view of the false negative rate (f) for different values
of window size and maximum cluster radius parameters.

VI. EXPERIMENTAL RESULTS
This section first describes the acquired experimental

datasets. Next, the suitable values of control parameters are
found by analyzing their impact on the performance of the
algorithm. Finally, the classification performance is evaluated
on the acquired testing datasets.

A. Experimental Datasets
The Nmap [28] and Nessus [29] software utilities were used

to create anomalous network traffic behavior in an attempt to
emulate the probes of a cyber attacker. Nmap is a network
scanning tool commonly used to identify hosts, scan ports,
operating systems and to determine applications that are
listening on open ports. It has many options and provides
useful reconnaissance information for determining further
courses of action. Nessus is a network scanning tool that
provides auditing capabilities, vulnerability assessments and
profiling information. In addition to general computer related
assessments, control system specific vulnerabilities are
available and were used on the previously described
experimental test-bed.

The simulated intrusion attempts include: ARP pings, SYN
stealth scans, port scanning, open port identification and
others. Cyber attacks ranged from long attacks composed of
many packets to very short intrusion sequences. Two sets of
experimental data have been recorded. The recorded training
set is composed of 6 dataset with only normal network
behavior. Overall, 60,661 packets of normal network traffic
were acquired including specialized normal behavior such as
system initialization and system component reconnection. The
second set is a testing set composed of 11 datasets, which
include simulated abnormal behavior. Overall 213,924 packets
have been recorded.

B. Parameter Tuning
The performance of the presented anomaly detection

algorithm depends on the values of several control parameters:
i) window size of the window feature extraction, ii) maximum
cluster radius for the online NNC algorithm, iii) the fuzziness
parameter � of the fuzzy membership functions, and iv) the
value of the crisp threshold for normal/anomaly traffic
labeling.

The correct classification, the false negative and the false
positive rates were used as performance measures. The correct
classification rate is the percentage of the overall correctly
classified data instances. The false negative rate is the ratio of
incorrectly labeled normal behavior inputs and the overall
number of normal behavior instances. The false positive rate is
the ratio of incorrectly label anomalous inputs and the overall
number of anomalies.

Fig. 7 and Fig. 8 depict the performance for different values
of window size, maximum cluster radius and the crisp decision
threshold. Fig. 7(a) shows the number of generated clusters.
This number monotonically increases with the decreasing
maximum cluster radius and reaches its maximum for window
size around 6. The more clusters generated, the more detailed
the model. However, a more detailed model increases the
chance of overfitting and requires additional computational
time. From Fig. 7(b)-(f) it can be seen that the classification
performance primarily depends on the window size. Small
values of window size (e.g. 2, 4 or 6) generate increased
number of false negatives with non-zero false positive rate
(~4%). From the detailed view in Fig. 7(c) and Fig. 7(f) it is
apparent that there is a slight gradient towards smaller values
of window size. Hence, values of window size around 10 seem
to yield optimal results for the given datasets.

(a) (b) (c)

Fig. 8 Parameter control analysis of the proposed anomaly detection algorithm. Figures show the correct classification rate (a), the false negative rate (b), and
the false positive rate (c) for different values of window size and the sensitivity threshold.

(a)

(b)

(c)

Fig. 9 Anomaly detection performance on dataset 1 for values of parameter
� = 0.5 (a), 1 (b), and 2.0 (c).

Fig. 8 investigates the influence of the crisp decision
threshold and the window size. High rates of both false
positives and negatives can be again seen for smaller values of
window size and for smaller values of decision threshold. The
figures demonstrate that with window size of approximately
20 packets, the algorithm is least sensitive to the value of the
crisp decision threshold. This is likely to be where the best
separation between normal and anomaly behavior is obtained.

The influence of the fuzziness parameter of the membership
function is briefly demonstrated in Fig. 9. Here, the response
of the algorithm applied to dataset 1 (thin line is algorithm

output, thick line marks known intrusions) is plotted. It can be
observed that smaller values of the fuzziness parameter
produce narrower membership functions, which tend to reject
more instances of more unusual normal behavior. However,
larger values of the fuzziness parameters would eventually
lead to increased false positive rate as anomaly instances
would become less distinct from the normal behavior.

In summary, the following parameters have been selected as
the optimal values for the acquired experimental data: window
size = 20, maximum cluster radius = 0.01, the fuzziness
parameter � = 2.0, and crisp threshold = 0.9.

(a)

(b)

(c)

Fig. 10 Anomaly detection performance of the proposed algorithm on segments of packets from datasets 2 (a), 3 (b), and 4 (c). Thin line represents system
decision, thick line denotes the known anomalous behavior.

TABLE II

CLASSIFICATION PERFORMANCE OF THE FUZZY LOGIC BASED ANOMALY DETECTION ALGORITHM ON DIFFERENT DATASETS

Datasets Number of Packets Classification
Rate False Negatives False Positives Processing Time

per Packet

Data 1 35,112 99.702 % 1.485% 0.000 % 0.264 ms
Data 2 29,147 99.586 % 1.448 % 0.000 % 0.217 ms
Data 3 34,148 99.517 % 1.251 % 0.000 % 0.206 ms
Data 4 13,131 99.313 % 0.715 % 0.000 % 0.206 ms
Data 5 10,444 99.299 % 0.721 % 0.000 % 0.206 ms
Data 6 5,401 99.053 % 1.006 % 0.000 % 0.196 ms
Data 7 7,926 99.646 % 0.369 % 0.000 % 0.198 ms
Data 8 23,134 99.307 % 0.704 % 0.000 % 0.201 ms
Data 9 24,388 99.531 % 0.502 % 0.000 % 0.210 ms

Data 10 15,431 99.422 % 0.701 % 0.000 % 0.201 ms
Data 11 15,565 99.180 % 1.002 % 0.000 % 0.226 ms

Sum / Average 213,924 99.360 % 0.900 % 0.000 % 0.212 ms

C. Classification Performance Evaluation
The fuzzy logic based anomaly detection algorithms was

applied to the 11 acquired testing datasets. The algorithm was
trained on the 6 training datasets composed of 60,661 normal
behavior packets. The training took 11.946 s resulting in a
potentially maximum processing speed of over 5,000 packets
per second. Altogether 71 fuzzy rules were extracted.

The classification performance is summarized in Table II.
Here, the classification rate, the false negative and the false
positive rates are depicted for each dataset and the average
values are calculated. It can be observed that the algorithm
maintained 0% false positive rate and 0.9% average false
negative rate. Hence, no intrusion attempts were missed, while
maintaining low false negative rate.

Fig. 10 visually demonstrates the classification of datasets 2,
3 and 4. The thin line denotes the prediction of the anomaly
detection system and the thick line above the system response
marks the known occurrence of the anomalous behavior. It can
be seen that the proposed anomaly detection system responded
well to both long and short intrusion attempts.

VII. CONCLUSION
This paper presented a novel fuzzy logic based anomaly

detection algorithm for embedded network security cyber
sensors. The anomaly detection algorithm was specifically
designed to allow for both fast learning and fast classification
on the constrained computational resources of the embedded
device. The algorithm extracts fuzzy rules using an adapted
version of the online nearest neighbor clustering algorithm
directly to the stream of packets.

The proposed algorithm was tested on an experimental test-
bed mimicking the environment of a critical infrastructure
control system with emulated probes of a cyber attacker. The
control parameters of the presented algorithm were tuned via
performance analysis. The final performance evaluation was
performed on a set of 11 test datasets with over 200,000
packets with a wide range of anomalous network behavior.
The experimental analysis yielded 99.36% correct
classification rate with 0.0% false positive rate and 0.9% false
negative rates.

The primary direction for future work includes
incorporating type-2 fuzzy logic into the algorithm design,
fusing the anomaly-detection based system with intrusion
signatures to improve the classification performance and
deploying the algorithm in real operational settings.

REFERENCES
[1] D. Yang, A. Usynin, J. W. Hines, “Anomaly-Based Intrusion Detection

for SCADA Systems,” in Proc. of 5th Intl. Topical Meeting on Nuclear
Plant Instrumentation, Control and Human Machine Interface
Technologies (NPIC&HMIT 05) , Albuquerque, NM, Nov 12-16, 2006.

[2] H. S. Kim, J. M. Lee, T. Park, W. H. Kwon, “Design of networks for
distributed digital control systems in nuclear power plants,” Intl. Topical
Meeting on Nuclear Plant Instrumentation, Controls, and Human-
Machine Interface Technologies (NPIC&HMIT 2000), Washington, DC,
November 2000.

[3] Dana A. Shea, “Critical Infrastructure: Control Systems and the Terrorist
Threat,” Report for Congress RL31534, February, 2003.

[4] C. G. Rieger, D. I. Gertman, M. A. McQueen, “Resilient Control
Systems: Next Generation Design Research,” in Proc. 2nd IEEE Conf. on
Human System Interactions, Catania, Italy, pp. 632-636, May 2009.

[5] J. P. Anderson, Computer security threat monitoring and surveillance,
Technical report, James P. Anderson Co, 1980.

[6] D. E. Denning, “An Intrusion Detection Model,” in IEEE Trans. on
Software Engineering,vol. SE-13, pp. 222-232, February 1987.

[7] R. Sommer, V. Paxson, “Outside the Closed World: On Using Machine
Learning For Network Intrusion Detection,” in Proc. of IEEE Symp. on
Security and Privacy, Oakland, California, pp. 305-316, 2010.

[8] V. Chandola, A. Banerjee, V. Kumar, “Anomaly Detection: A Survey,”
Technical Report, University of Minnesota, 2007.

[9] I. H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools
and Techniques, Morgan Kaufmann Publishers, 2005.

[10] Z. Zhang, J. Li, C. Manikopulos, J. Jorgenson, J. Ucles, “HIDE: a
Hierarchical Network Intrusion Detection System Using Statistical
Preprocessing and Neural Network Classification,” in Proc. IEEE
Workshop on Information Assurance and Security, 2001.

[11] J. Ryan, M. Llin, R. Miikkulainen, “Intrusion Detection with Neural
Networks, ” in Advances in Neural Information Processing Systems 10,
Cambridge, MA, MIT Press, 1998.

[12] H. Debar, B Dorizzi, “An Application of a Recurrent Network to an
Intrusion Detection System,” in Proc. of the International Joint
Conference on Neural Networks, pp. 78-83.

[13] O. Linda, T. Vollmer, M. Manic,“Neural Network Based Intrusion
Detection System for Critical Infrastructures,” in Proc. Int. Joint INNS-
IEEE Conf. on Neural Networks, Atlanta, Georgia, June 14-19, 2009.

[14] W. Hu, Y. Liao, V. R. Vemuri, “Robust Anomaly Detection Using
Support Vector Machines,” in Proc. International Conference on
Machine Learning, 2003.

[15] G. Stein, B. Chen, A. S. Wu, K. A. Hua, “Decision Tree Classifier For
Network Intrusion Detection With GA-based Feature Selection,” in
Proc. of the 43rd ACM Southeast Conference, Kennesaw, GA, March
2005.

[16] F. Gonzalez, D. Dasgupta, J. Gomez, M. Kaniganti, “An Evolutionary
Approach to Generate Fuzzy Anomaly Signatures,” in Proc. the IEEE
Information Assurance Workshop, June 2003.

[17] J. Gomez, D. Dasgupta, F. Gonzalez, “Detecting Cyber Attacks with
Fuzzy Data Mining Techniques,” in Proc. of the Workshop on Data
Mining for Counter Terrorism and Security, 3rd SIAM Conference on
Data Mining, San Francisco, CA, May, 2003.

[18] S. Zhong, T. Khoshgoftaar, N. Seliya, “Clustering-based network
intrusion detection,” in Intl. Journal of Reliability, Quality and Safety,
Vol. 14, No. 2, 2007, pp. 169-187.

[19] Q. Wang, V. Mehalooikonomou, “A Clustering Agorithm for Intrusion
Detection,” in SPIE Conference on Data Mining, Intrusion Detection,
Information Assurance, and Data Networks Security, Orlando, Florida,
USA, 2005.

[20] L. Portnoy, E. Eskin, S. Solfo, “Intrusion detection with unlabeled data
using clustering,” in Proc. Of ACM CSS Workshop on Data Mining
Applied Security, Philadelphia, PA, November 5-8, 2001.

[21] R. Sommer, V. Paxson, N. Weaver, “An architecture for exploiting
multi-core processor to parallelize network intrusion prevention,”
Concurrency Computation: Practice and Experience, 21: 1255-1279,
2009.

[22] Tofino webpage [URL], Available: http://www.tofinosecurity.com, from
October 2010.

[23] L. A. Zadeh, “Fuzzy Sets,” in Information and Control, vol. 8, pp. 338-
353, 1965.

[24] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction
and New Directions, Upper Saddle River, NJ: Prentice Hall PTR, 2001.

[25] G. J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic Theory and
Applications, Prentice Hall, New York, 1995.

[26] Intel Corporation, Datasheet—Intel IXP42X Product Line of Network
Processors and IXC1100 Control Plane Processor, June 2007.

[27] Allan Bradley PLC 5 Controller webpage, Available:
http://www.ab.com/programmablecontrol/plc/, from October 2010.

[28] Nmap webpage [URL], Available: http://nmap.org, from October 2010.
[29] Nessus webpage [URL], Available: http://www.nessus.org.org/nessus/,

from October 2010.

